¡¡
PUBLICATIONS
(Google
Scholar Citations)
(Scoups
Citations)
Edited Books
-
M. G. Gong, A. M. Zhou, A. K. Qin and L. Q. Pan, ¡°Special
issue on collaborative learning and optimization based on swarm and
evolutionary computation¡±, Swarm and Evolutionary Computation,
vol. 47, 2019¡£
-
Y. Wu, K. Qin, M. G. Gong and Q. G. Miao, ¡°Special issue on
applications of computational intelligence¡±, Electronics,
MDPI, 2023.
Referred Journal
Articles
-
M. G.
Gong, Y. Q. Zhang, Y. Gao, A. K. Qin, Y. Wu, S. F. Wang and
Y. H. Zhang, ¡°A multi-modal vertical federated learning framework
based on homomorphic encryption¡±, IEEE Transactions on
Information Forensics and Security, DOI:
10.1109/TIFS.2023.3340994, in press, 2023. (SCI
IF: 6.8; Q1)
-
S.
Shafiei, H. Dia, W. Wu, H. Grzybowska and A. K. Qin, ¡°An
agent-based simulation approach for urban road pricing considering
the integration of autonomous vehicles with public transport¡±,
IEEE Transactions on Intelligent Transportation Systems, DOI:
10.1109/TITS.2023.3315338, in press, 2023. (SCI
IF: 8.5; Q1)
-
M. G.
Gong; Y. Gao; Y. Wu; Y. Q. Zhang, A. K. Qin and Y.-S. Ong,
¡°Heterogeneous multi-party learning with data-driven network
sampling¡±, IEEE Transactions on Pattern Analysis and Machine
Intelligence, DOI: 10.1109/TPAMI.2023.3290213, in press, 2023. (SCI
IF: 23.6; Q1)
-
Z. H.
Cui, T. H. Zhao, L. J. Wu, A. K. Qin and J. W. Li,
¡°Multi-objective cloud task scheduling optimization based on
evolutionary multi-factor algorithm¡±, IEEE Transactions on Cloud
Computing, DOI: 10.1109/TCC.2023.3315014, in press, 2023. (SCI
IF: 6.5; Q1)
-
Y. Gao,
M. G. Gong, Y. Xie, A. K. Qin, K. Pan and Y.-S. Ong,
¡°Multiparty dual learning¡±, IEEE Transactions on Cybernetics,
DOI: 10.1109/TCYB.2021.3139076, in press, 2023. (SCI
IF: 11.8; Q1)
-
K. D.
Lyu, H. Li, M. Gong, L. N. Xing and A. K. Qin,
¡°Surrogate-assisted evolutionary multiobjective neural architecture
search based on transfer stacking and knowledge distillation¡±,
IEEE Transactions on Evolutionary Computation, DOI:
10.1109/TEVC.2023.3319567, in press, 2023. (SCI
IF:14.3; Q1)
-
P. Abeysekara, H. Dong and A. K. Qin,
¡°Edge intelligence for real-time IoT service trust prediction¡±,
IEEE Transactions on Services Computing,
16(4):
2606-2619,
2023. (SCI
IF: 8.1; Q1)
-
M. Gong,
Y. Zhao, H. Li, A. K. Qin, L. N. Xing, J. Z. Li, Y. T. Liu
and Y. H. Liu, ¡°Deep fuzzy variable C-means clustering incorporated
with curriculum learning¡±, IEEE Transactions on Fuzzy Systems,
DOI: 10.1109/TFUZZ.2023.3283046, in press, 2023. (SCI
IF:11.9; Q1)
-
Y. Q.
Zhang, M. G. Gong, Y. Gao, A. K. Qin, K. Wang, Y. M. Lin and
S. F. Wang, ¡°Device-performance-driven heterogeneous multiparty
learning for arbitrary images¡±, IEEE Transactions on Neural
Networks and Learning Systems, DOI: 10.1109/TNNLS.2023.3282242,
in press, 2023. (SCI
IF:10.4; Q1)
-
P. Abeysekara, H.
Dong and A. K. Qin,
¡°Data-driven trust prediction in mobile edge computing-based IoT
systems¡±, IEEE Transactions on Services Computing, 16(1):
246-260, 2023. (SCI IF:8.1; Q1)
-
Y. Gao,
M. G. Gong, Y.-S. Ong, A. K. Qin, Y. Wu and F. Xie, ¡°A
collaborative multimodal learning-based framework for COVID-19
diagnosis¡±, IEEE Transactions on Neural Networks and Learning
Systems, DOI: 10.1109/TNNLS.2023.3290188, in press, 2023. (SCI
IF:10.4; Q1)
-
J. Shi,
T. C. Wu, A. K. Qin, T. Shao, Y. Lei, G. Jeon, ¡°Deep-growing
neural network with manifold constraints for hyperspectral image
classification¡±, IEEE Transactions on Neural Networks and
Learning Systems, DOI: 10.1109/TNNLS.2023.3292537, in press,
2023. (SCI
IF:10.4; Q1)
-
Y. Wu, Y.
Zhang, W. P. Ma, M. G. Gong, X. L. Fan, M. Y. Zhang, A. K. Qin
and Q. G. Miao, ¡°RORNet: Partial-to-partial registration network
with reliable overlapping representations¡±, IEEE Transactions on
Neural Networks and Learning Systems, DOI:
10.1109/TNNLS.2023.3286943, in press, 2023. (SCI
IF:10.4; Q1)
-
M. G.
Gong, W. Y. Qiao, H. Li, A. K. Qin, T. Q. Gao, T. S. Luo and
L. N. Xing, ¡°RAFNet: Interdomain representation alignment and
fine-tuning for image series classification¡±, IEEE Transactions
on Geoscience and Remote Sensing, DOI:
10.1109/TGRS.2023.3302430, in press, 2023. (SCI
IF: 8.2; Q1)
-
D. Zhang, A. K. Qin, Y. Chen and G. X.
Lu, ¡°A machine learning approach to predicting mechanical behaviour
of non-rigid foldable square-twist origami¡±,
Engineering Structures, 278:
115497, 2023. (SCI
IF: 5.5; Q1)
-
Y. Wu, J.
M. Liu, M. G. Gong, P. R. Gong, X. L. Fan, A. K. Qin, Q. G.
Miao and W. P. Ma ¡°Self-supervised intra-modal and cross-modal
contrastive learning for point cloud understanding¡±, IEEE
Transactions on Multimedia, DOI: 10.1109/TMM.2023.3284591, in
press, 2023. (SCI
IF: 7.3; Q1)
-
H. Li, F. G. Wan, M. G. Gong, A. K.
Qin, Y. Wu and L. N. Xing, ¡°Privacy-enhanced multitasking
particle swarm optimization based on homomorphic encryption¡±,
IEEE Transactions on Evolutionary Computation, DOI:
10.1109/TEVC.2023.3319566, in press, 2023. (SCI IF:14.3; Q1)
-
Y.
T. Liu, H. Li, M. G.
Gong
and A. K. Qin,
¡°Nonzero degree-based multiobjective cooperative coevolutionary for
block sparse recovery¡±, IEEE Transactions
on Evolutionary Computation, DOI: 10.1109/TEVC.2023.3264875,
in press, 2023. (SCI IF:14.3; Q1)
-
Y. Xie,
Y. F. Liang, M. G. Gong, A. K. Qin, Y.-S. Ong and
T. T. He, ¡°Semisupervised graph neural networks for graph
classification¡±, IEEE Transactions on Cybernetics, 53(10):
6222-6235,
2023. (SCI
IF: 11.8; Q1)
-
D.
Zhang, A. K. Qin, S. Shen, A.
Trinchi and G.X. Lu, ¡°Energy absorption analysis of origami
structures based on small number of samples using conditional GAN¡±,
Thin-Walled Structures, 188:
110772, 2023 (SCI
IF: 6.4; Q1)
-
M. G.
Gong, H. Zhou, A. K. Qin, W. F. Liu and Z. Y. Zhao,
¡°Self-paced co-training of graph neural networks for semi-supervised
node classification¡±, IEEE Transactions on Neural Networks and
Learning Systems, 34(11):
9234-9247,
2023.
(SCI IF:10.4; Q1)
-
J. Shi, T. C. Wu, H. W. Yu, A. K. Qin
and G. Jeon, ¡°Multi-layer composite
autoencoders for semi-supervised change detection in heterogeneous
remote sensing images¡±, Science China
Information Sciences, 66(4): 140308, 2023.
(SCI IF:
8.8; Q1)
-
L. Yan, W. L. Qi, A. K. Qin, S. X. Yang,
D. W. Gong, B. Y. Qu and J. Liang, ¡°Manifold clustering-based
prediction for dynamic multiobjective optimization¡±,
Swarm and Evolutionary Computation,
77: 101254, 2023. (SCI
IF: 10.0; Q1)
-
Y. Wu, H. Q. Ding, M. G. Gong, A. K.
Qin, W. P. Ma, Q. G. Miao and K. C. Tan, ¡°Evolutionary multiform
optimization with two-stage bidirectional knowledge transfer
strategy for point cloud registration¡±,
IEEE Transactions
on Evolutionary Computation, DOI: 10.1109/TEVC.2022.3215743,
in press, 2022. (SCI IF:14.3; Q1)
-
G. Y. Gao, Z. M. Liu, G. J. Zhang, J. Y.
Li and A. K. Qin, ¡°DANet: Semi-supervised differentiated
auxiliaries guided network for video action recognition¡±, Neural
Networks, 158: 121-131, 2023. (SCI IF: 7.8; Q1)
-
J. Shi,
T. C. Wu, A. K. Qin, Y. Lei and G. Jeon,
¡°Semisupervised adaptive ladder network for remote sensing image
change detection¡±, IEEE Transactions on Geoscience and Remote
Sensing, 60: 5408220, 2022. (SCI IF: 8.2; Q1)
-
M. G. Gong, F. L. Jiang, A. K. Qin, T. F. Liu, T. Zhan,
D. Lu, H. H. Zheng and M. Y. Zhang, ¡°A spectral and spatial
attention network for change detection in hyperspectral images¡±, IEEE
Transactions on Geoscience and Remote Sensing, 60: 5521614, 2022. (SCI IF: 8.2; Q1)
-
K.-Y.
Feng, X. Fei, M. G. Gong, A. K. Qin, H. Li and Y.
Wu, ¡°An automatically layer-wise searching strategy for channel
pruning based on task-driven sparsity optimization¡±, IEEE
Transactions on Circuits and Systems for Video Technology,
32(9): 5790-5802, 2022.
(SCI IF: 8.4; Q1)
-
N. Sultana, J. Chan, T. Sarwar and A.
K. Qin, ¡°Learning to optimise general TSP instances¡±,
International Journal of Machine Learning and Cybernetics,
13(8): 2213-2228, 2022. (SCI IF: 5.6; Q1)
-
J. L.
Liu, M. G. Gong, Z. D. Tang, A. K. Qin, H. Li and F. L.
Jiang, ¡°Deep image inpainting with enhanced normalization and
contextual attention¡±, IEEE Transactions on Circuits and Systems
for Video Technology, 32(10): 6599-6614, 2022.
(SCI IF: 8.4; Q1)
-
Z. D. Tang, M. G. Gong, Y. Xie, H. Li and
A. K. Qin, ¡°Multi-task particle swarm optimization with
dynamic neighbor and level-based inter-task learning¡±,
IEEE Transactions on Emerging Topics in
Computational Intelligence,
6(2): 300-314, 2022. (SCI IF: 5.3; Q1)
-
C. J. Zhang, A. K. Qin, W. M.
Shen, L. Gao, K. C. Tan and X. Y. Li, ¡°ϵ-Constrained differential
evolution using an adaptive ϵ-Level control method¡±,
IEEE Transactions on Systems, Man, and
Cybernetics: Systems,
52(2): 769-785,
2022. (SCI IF: 8.7; Q1)
-
Z. D. Tang, M. G. Gong, Y. Wu, A. K. Qin
and K. C. Tan, ¡°A multifactorial optimization framework based on
adaptive inter-task coordinate system¡±,
IEEE Transactions on Cybernetics, 52(7): 6745-6758, 2022. (SCI IF: 11.8; Q1)
-
S. J.
Zhang, M. G. Guo, Y. Xie, A. K. Qin, H. Li, Y. Gao
and Y.-S. Ong, ¡°Influence-aware attention networks for anomaly
detection in surveillance videos¡±, IEEE Transactions on Circuits
and Systems for Video Technology, 32(8): 5427-5437, 2022. (SCI
IF: 8.4; Q1)
-
G. L.
Gao, Z. F. Bao, J. Cao, A. K. Qin and T. Sellis,
¡°Location-centered house price prediction: A multi-task learning
approach¡±, ACM Transactions on Intelligent Systems and
Technology, 13(2): Article No. 32, 2022. (SCI
IF: 5.0; Q1)
-
C. Jacobs, K. Glazebrook, A. K.
Qin and T. Collett, ¡°Exploring the interpretability of deep
neural networks used for gravitational lens finding with a
sensitivity probe¡±, Astronomy and Computing, 38: 100535,
2022. (SCI IF: 2.5; Q2)
-
D. A. Tedjopurnomo, Z. F. Bao, B. H. Zheng, F. Choudhury and A. K.
Qin, ¡°A survey on modern deep neural network for traffic
prediction: trends, methods and challenges¡±, IEEE Transactions on
Knowledge and Data Engineering,
34(4): 1544-1561, 2022. (SCI IF: 8.9; Q1)
-
Z. D. Tang, M. G. Gong, Y. Xie, H. Li and A.
K. Qin,
¡°Multi-task particle
swarm optimization with dynamic neighbor and level-based inter-task
learning¡±, IEEE
Transactions on Emerging Topics in Computational Intelligence, 6(2):
300-314, 2022.
(SCI IF: 5.3; Q1)
-
H. Xu, A. K. Qin and S. Y. Xia,
¡°Evolutionary multi-task optimization with adaptive knowledge
transfer¡±, IEEE Transactions on Evolutionary Computation,
26(2): 290-303, 2022. (SCI IF:14.3; Q1)
-
Y. X.
Huang, L. Feng, A. K. Qin, M. Chen and K. C. Tan,
¡°Towards large-scale evolutionary multi-tasking: A GPU-based
paradigm¡±, IEEE
Transactions on Evolutionary Computation, 26(3): 585-598, 2022.
(SCI IF:14.3; Q1)
-
M. G. Gong, S. F. Ji, Y. Xie, Y. Gao and
A. K. Qin, ¡°Exploring temporal information for dynamic
network embedding¡±, IEEE Transactions on
Knowledge and Data Engineering, 34(8): 3754-3764, 2022.
(SCI IF: 8.9; Q1)
-
Y. Wu, J. H. Li, Y. Z. Yuan,
A. K. Qin, Q. G. Miao and M. G. Gong, ¡°Commonality
autoencoder: Learning common features for change detection from
heterogeneous images¡±,
IEEE Transactions on Neural Networks and Learning Systems,
33(9): 4257-4270, 2022. (SCI IF:10.4; Q1)
-
X. L. Fan, M. G. Gong, Y. Wu, A.
K. Qin and
Y. Xie, ¡°Propagation enhanced neural message passing for graph
representation learning¡±, IEEE
Transactions on Knowledge and Data Engineering,
35: 1952-1964, 2023. (SCI IF: 8.9; Q1)
-
H. M. L. Frazer, A.
K. Qin, H. Pan and P. Brotchie,
¡°Evaluation
of deep learning-based artificial intelligence techniques for breast
cancer detection on mammograms: Results from a retrospective study
using a BreastScreen Victoria dataset¡±, Journal of Medical Imaging
and Radiation Oncology, 65:529-537, 2021. (SCI IF: 1.6;
Q3)
-
W. F. Liu, M. G.
Gong, Z. D. Tang, A. K. Qin, K.
Sheng and M. L. Xu ¡°Locality preserving dense graph convolutional
networks with graph context-aware node representations¡±, Neural
Networks, 143: 108-120, 2021. (SCI
IF: 7.8; Q1)
-
Y. Xie, C. Chen,
M. G. Gong, D. Y. Li and A. K. Qin,
¡°Graph embedding via multi-scale graph representations¡±, Information
Sciences, 578: 102-115, 2021. (SCI
IF: 8.1; Q1)
-
D. A. Tedjopurnomo, X. C. Li, Z. F. Bao, G. Cong, F. Choudhury and A.
K. Qin, ¡°Similar trajectory search with spatio-temporal deep
representation learning¡±, ACM Transactions on Intelligent
Systems and Technology, 12(6): Article No. 77, 2021. (SCI
IF: 5.0; Q1)
-
X. Zhou, A. K. Qin, M. G.
Gong and K. C. Tan, ¡°A survey on evolutionary construction of deep
neural networks¡±, IEEE Transactions on
Evolutionary Computation, 25(5): 894-912, 2021. (SCI IF:
14.3; Q1)
-
M. G. Gong, J. Liu, A. K. Qin, K.
Zhao and K. C. Tan, ¡°Evolving deep neural networks via cooperative
coevolution with backpropagation¡±,
IEEE Transactions on Neural Networks and Learning Systems,
32(1): 420-434, 2021. (SCI IF: 10.4; Q1)
-
M. G. Gong, Y. Gao, Y. Xie and A. K. Qin,
¡°An attention-based unsupervised adversarial model for movie review
spam detection¡±, IEEE Transactions on
Multimedia, 23: 784-796, 2021. (SCI IF: 7.3; Q1)
-
L. Feng, L. Zhou, A. Gupta, J. H. Zhong, Z. X. Zhu, K. C. Tan and
K. Qin, ¡°Solving generalized vehicle routing problem with occasional
drivers via evolutionary multitasking¡±,
IEEE Transactions on Cybernetics, 51(6): 3171-3184, 2021. (SCI IF: 11.8; Q1)
-
Z. M. Liu, J. Y. Li, G. Y. Gao and A. K.
Qin, ¡°Temporal memory network towards real-time video
understanding¡±, IEEE Access, 8:
223837-223847, 2020. (SCI IF: 3.9; Q1)
-
M. G. Gong, K. Pan, Y. Xie, A. K. Qin
and Z. D. Tang, ¡°Preserving differential privacy in deep neural
networks with relevance-based adaptive noise imposition in neural
networks¡±, Neural Networks, 125:
131-141, 2020. (SCI IF: 7.8; Q1)
-
Y. Xie, C. Y. Yao, M. G. Gong, C. Chen and
A. K. Qin, ¡°Graph convolutional
networks with multi-level coarsening for graph classification¡±,
Knowledge-Based Systems, 194:
Article No. 105578, 2020. (SCI IF: 8.8; Q1)
-
N. Tran, J.-G. Schneider, I. Weber and A.
K. Qin, ¡°Hyper-parameter optimization in classification:
To-do or not-to-do¡±, Pattern Recognition,
103:107245, 2020. (SCI IF: 8.0; Q1)
-
Y. Xie, M. G. Gong, Y. Gao,
A. K. Qin and X. L. Fan, ¡°A multi-task representation learning
architecture for enhanced graph classification¡±,
Frontiers in Neuroscience,
13: Article No. 1395, 2020. (SCI IF: 4.3; Q2)
-
M. G. Gong, Y. Xie, K. Pan, K. Y. Feng and
A. K. Qin, ¡°A survey on
differentially private machine learning¡±,
IEEE Computational Intelligence Magazine, 15(2): 49-64, 2020. (SCI
IF: 9.0; Q1)
-
X. L. Zheng, A. K. Qin,
M. G. Gong and D. Y. Zhou, ¡°Self-regulated evolutionary multi-task
optimization¡±, IEEE Transactions on
Evolutionary Computation, 24(1): 16-28, 2020. (SCI IF:
14.3; Q1)
-
J. Liu, M. G. Gong, A. K. Qin
and K. C. Tan, ¡°Bipartite differential neural network for
unsupervised image change detection¡±,
IEEE Transactions on Neural
Networks and Learning Systems, 31(3): 876-890, 2020. (SCI IF:
10.4; Q1)
-
G. Q. Li, F. Zeng, H. Q. Li and
A. K. Qin, ¡°Matrix
function optimization problems under orthonormal constraint¡±,
IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 50(3): 802-814, 2020. (SCI IF:
8.7; Q1)
-
H. Song, A. K. Qin and F.
D. Salim, ¡°Evolutionary model construction for electricity
consumption prediction¡±,
Neural Computing and Applications, 33: 12155-12172, 2020. (SCI
IF: 6.0; Q1)
-
Y. Xie, M. G. Gong, A. K. Qin, Z.
D. Tang and X. L. Fan, ¡°TPNE: Topology preserving network
embedding¡±, Information Sciences,
504: 20-31, 2019. (SCI IF: 8.1; Q1)
-
L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. S. Ong, K. C. Tan and
A. K. Qin, ¡°Evolutionary multitasking via explicit autoencoding¡±,
IEEE Transactions on
Cybernetics, 49(9): 3457-3470, 2019.
(SCI IF: 11.8; Q1)
-
C. Jacobs, T. Collett, K. Glazebrook, E. Buckley-Geer, H. T. Dieh,
H. Lin, C. McCarthy, A. K. Qin, et
al., ¡°An extended catalog of galaxy¨Cgalaxy strong gravitational
lenses discovered in des using convolutional neural networks¡±,
Astrophysical Journal Supplement Series,
243(1): Article No. 17, 2019. (SCI IF: 8.7; Q1)
-
X. L. Liang, A. K. Qin,
K. Tang and K. C. Tan, ¡°QoS-aware web service composition with
internal complementarity¡±,
IEEE Transactions on Services Computing, 12(2): 276-289, 2019. (SCI
IF: 8.1; Q1)
-
C. Jacobs, T. Collett, K. Glazebrook, C. McCarthy,
A. K. Qin,
et al. ¡°Finding high-redshift strong lenses in DES using
convolutional neural networks¡±,
Monthly Notices of the Royal
Astronomical Society, 484(4): 5330-5349, 2019. (SCI IF: 4.8;
Q1)
-
B. Kazimipour, M. N. Omidvar,
A. K. Qin, X. D. Li and X. Yao, ¡°Bandit-based cooperative
coevolution for tackling contribution imbalance in large-scale
optimization problems¡±, Applied Soft Computing, 76: 265-281, 2019. (SCI IF: 8.7; Q1)
-
J. Liono, P. P. Jayaramanb,
A. K. Qin, T. Nguyen and F. D. Salim, ¡°QDaS: Quality driven data
summarization for effective storage management in Internet of
Things¡±, Journal of Parallel
and Distributed Computing, 127: 196-208, 2019. (SCI IF: 3.8;
Q1)
-
J. Liu, M. G. Gong, A. K. Qin
and P. Zhang, ¡°A deep convolutional coupling network for change
detection based on heterogeneous optical and radar images¡±,
IEEE Transactions on Neural
Networks and Learning Systems, 29(3): 545-559, 2018. (SCI IF:
10.4; Q1)
-
S. K. Mistry, A. Bouguettaya, H. Dong and
A. K. Qin, ¡°Metaheuristic
optimization for long-term IaaS service composition¡±,
IEEE Transactions on Services
Computing, 11(1): 131-143, 2018. (SCI IF: 8.1; Q1)
-
L. S. Cui, X. Z. Zhang, A. K.
Qin, T. Sellis and L. F. Wu, ¡°CDS: Collaborative distant
supervision for Twitter account classification¡±,
Expert Systems with
Applications, 83: 94-103, 2016. (SCI IF: 8.5; Q1)
-
C. Zhang, P. Lim, A. K. Qin
and K. C. Tan, ¡°Multi-objective deep belief networks ensemble for
remaining useful life estimation in prognostics¡±,
IEEE Transactions on Neural
Networks and Learning Systems, 28(10): 2306-2318, 2016. (SCI
IF: 10.4; Q1)
-
K. Y. Lu, S. Y. Xia, J. K. Zhang,
A. K. Qin, ¡°Robust road
detection in shadow conditions¡±, Journal
of Electronic Imaging, 25(4):
Article No. 043027, 2016. (SCI IF: 1.1; Q3)
-
B. Y. Qu, B. F. Lang, J. J. Liang,
A. K. Qin and O. D.
Crisalle, ¡°Two-hidden-layer extreme learning machine for regression
and classification¡±, Neurocomputing,
175: 826-834, 2016. (SCI IF: 6.0; Q1)
-
M. G. Gong, Y. Wu, Q. Cai, W. Ma,
A. K. Qin, Z. Wang and L.
Jiao, ¡°Discrete particle swarm optimization for high-order graph
matching¡±, Information
Sciences, 328: 158-171, 2016. (SCI IF: 8.1; Q1)
-
L. Wan, K. Tang, M. Li, Y. Zhong and
A. K. Qin, ¡°Collaborative
active and semi-supervised learning for hyperspectral remote sensing
image classification¡±, IEEE
Transactions on Geoscience and Remote Sensing, 53(5): 2384-2396,
2015. (SCI IF: 8.2; Q1)
-
Y. Xiao, Z.-Y. Wang, J. Li, Z.-L. Yuan and
A. K. Qin, ¡°Two-step
beveled UWB printed monopole antenna with band-notch¡±,
International Journal of Antennas and Propagation, 2014: Article
No. 173704, 2014. (SCI IF: 1.5; Q3)
-
S. J. Guo, S.-U. Guan, W. F. Li, K. L. Man, F. Liu and
A. K. Qin, ¡°Input space partitioning for neural network learning¡±,
International Journal of Applied Evolutionary Computation, 4(2):
56-66, 2013.
-
P. Yu, A. K. Qin and D.
A. Clausi, ¡°Feature extraction of dual-pol SAR imagery for sea-ice
image segmentation¡±, Canadian Journal of
Remote Sensing, 38(3): 352-366, 2012. (SCI IF: 2.6; Q2)
-
P. Yu, A. K. Qin and D.
A. Clausi, ¡°Unsupervised polarimetric SAR image segmentation and
classification using region growing with edge penalty¡±,
IEEE Transactions on
Geoscience and Remote Sensing, 50(4): 1302-1317, 2012. (SCI
IF: 8.2; Q1)
-
A. K. Qin and D. A. Clausi, ¡°Multivariate image
segmentation based on semantic region growing with adaptive edge
penalty¡±, IEEE Transactions on
Image Processing, 19(8): 2157-2170, 2010. (SCI IF: 10.6; Q1)
-
D. A. Clausi, A. K. Qin,
M. S. Chowdhury, P. Yu and P. Maillard, ¡°MAGIC: MAp-guided ice
classification system¡±,
Canadian Journal of Remote Sensing, 36(1): 13-25, 2010. (SCI
IF: 2.6; Q2)
-
A. K. Qin, V. L. Huang and P. N. Suganthan,
¡°Differential evolution with strategy adaptation for global
numerical optimization¡±, IEEE
Transactions on Evolutionary Computation, 13(2): 398- 417,
2009. (SCI IF: 14.3; Q1)
-
J. J. Liang, A. K. Qin,
P. N. Suganthan and S. Baskar, ¡°Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions¡±,
IEEE Transactions on Evolutionary
Computation, 10(3): 281- 295,
2006. (SCI IF: 14.3; Q1)
-
A. K. Qin, P. N. Suganthan and M. Loog,
¡°Generalized null space uncorrelated Fisher discriminant analysis
for linear dimensionality reduction¡±,
Pattern Recognition, 39(9): 1805-1808, 2006. (SCI IF: 8.0; Q1)
-
J. J. Liang, S. Baskar, P. N. Suganthan and
A. K. Qin, ¡°Performance
evaluation of multiagent genetic algorithm¡±,
Natural Computing,
5(1): 83-96, 2006. (SCI IF: 2.1; Q3)
-
Q.-Y. Zhu, A. K. Qin, P.
N. Suganthan and G.-B. Huang, ¡°Evolutionary extreme learning
machine¡±, Pattern Recognition,
38(10): 1759-1763, 2005. (SCI IF: 8.0; Q1)
-
A. K. Qin and P. N. Suganthan, ¡°Enhanced neural
gas network for prototype based clustering¡±,
Pattern Recognition, 38(8):
1275-1288, 2005. (SCI IF: 8.0; Q1)
-
A. K. Qin and P. N. Suganthan, ¡°Initialization
insensitive LVQ algorithm based on dynamic cost function
adaptation¡±, Pattern Recognition,
38(5): 774-776, 2005. (SCI IF: 8.0; Q1)
-
A. K. Qin, P. N. Suganthan and M. Loog,
¡°Uncorrelated heteroscedastic LDA algorithm based on the weighted
pairwise Chernoff criterion¡±, Pattern
Recognition, 38(4): 613-616, 2005. (SCI IF: 8.0; Q1)
-
E. K. Tang, P. N. Suganthan, X. Yao and
A. K. Qin, ¡°Linear
dimensionality reduction using relevance weighted LDA¡±,
Pattern Recognition, 38(4):
485-493, 2005. (SCI IF: 8.0; Q1)
-
A. K. Qin and P. N. Suganthan, ¡°Robust growing
neural gas algorithm with application in cluster analysis¡±,
Neural Networks, 17 (8-9):
1135-1148, 2004. (SCI IF: 7.8; Q1)
Referred
Conference Proceedings
-
B. Wang, A. K. Qin, S.
Shafiei, H. Dia, S. Mihaita and H.
Grzybowska, ¡°Training physics-informed neural networks via
multi-task optimisation for traffic density prediction¡±, Proc. of
the
2023
IEEE International Joint Conference on Neural Networks
(IJCNN¡¯23), Gold Coast, Queensland, Australia, June 18-23, 2023.
-
B. Y. Hu, Y. Sun and A. K. Qin, ¡°A general
multiple data augmentation framework for training deep neural
networks¡±, Proc. of the 2022 IEEE International Joint Conference
on Neural Networks (IJCNN¡¯22), Padua, Italy, July 18-23, 2022.
-
H. Song, A. K. Qin and C. G. Yan, ¡°Multi-task
optimization based co-training for electricity consumption
prediction¡±, Proc. of the 2022 IEEE International Joint
Conference on Neural Networks (IJCNN¡¯22), Padua, Italy, July
18-23, 2022.
-
D. Tedjopurnomo, Z. F. Bao, F. Choudhury, H. Luo and
A. K. Qin, ¡°Equitable public bus network optimization for social
good: A case study of Singapore¡±, Proc. of the 2022 ACM
Conference on Fairness, Accountability, and Transparency (FAccT¡¯22),
Seoul Republic of Korea, June 21-24, 2022.
-
D. Zhao, A.-S. Mihaita, Y. M. Ou, S. Shafiei, H.
Grzybowska, K. Qin, G. Tan, M. Li and H. Dia, ¡°Traffic
disruption modelling with mode shift in multi-modal networks¡±,
Proc. of the 25th IEEE International Conference on
Intelligent Transportation Systems (ITSC¡¯22), Macau, China,
October 8-12, 2022.
-
S. Nag, Y. Khandelwal, S. Mittal, C. K. Mohan and A.
K. Qin, ¡°ARCN: A real-time attention-based network for crowd
counting from drone images¡±, Proc. of the IEEE 18th
India Council International Conference (INDICON¡¯21), Guwahati,
India, December 19-21, 2021
-
R. J. Duan, Y. F. Cheng, D. T. Niu, Y. Yang, A. K.
Qin and Y. He, ¡°AdvDrop: Adversarial Attack to DNNs by Dropping
Information¡±, Proc. of the 2021 IEEE/CVF International Conference
on Computer Vision (ICCV¡¯21), October 11-17, 2021.
-
N. Sultana, J. Chan, T. Sarwar and A. K. Qin,
¡°Learning to optimise routing problems using policy optimisation¡±,
Proc. of the 2021 IEEE International Joint Conference on Neural
Networks (IJCNN¡¯21), Shenzhen, China, July 18-22, 2021.
-
X. Zhou, A. K. Qin, Y. N. Sun and K. C. Tan, ¡°A
survey of advances in evolutionary neural architecture search¡±,
Proc. of the 2021 IEEE Congress on Evolutionary Computation (CEC¡¯21),
Krak¨®w, Poland, 28 June - 1 July 2021.
-
R. J. Duan, X. F. Mao, A. K. Qin, Y. F. Chen. S.
K. Ye, Y. He and Y. Yang, ¡°Adversarial laser beam: Effective
physical-world attack to DNNs in a blink¡±, Proc. of the
2021 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2021), Nashville, Tennessee, USA, June 19-25, 2021.
-
Z. Q. Li, H. Pan, Y. P. Zhu and A. K. Qin,
¡°PGD-UNet: A position-guided deformable network for simultaneous
segmentation of organs and tumors¡±, Proc. of the 2020 IEEE
International Joint Conference on Neural Networks (IJCNN¡¯20),
Glasgow, UK, July 19-24, 2020.
-
B. Y. Zhang, A. K. Qin, H. Pan and T. Sellis, ¡°A
novel DNN training framework via data sampling and multi-task
optimization¡±, Proc. of the 2020 IEEE International Joint
Conference on Neural Networks (IJCNN¡¯20), Glasgow, UK, July
19-24, 2020.
-
P. Abeysekara, H. Dong and A. K. Qin,
¡°Distributed machine learning for predictive analytics in mobile
edge computing based IoT environments¡±, Proc. of the 2020 IEEE
International Joint Conference on Neural Networks (IJCNN¡¯20),
Glasgow, UK, July 19-24, 2020.
-
R. J. Duan, X. J. Ma, Y. S. Wang, J. Bailey, A. K.
Qin and Y. Yang, ¡°Adversarial camouflage: Hiding adversarial
examples with natural styles¡±, Proc. of the 2020 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR¡¯20),
Seattle, Washington, USA, June 16-18, 2020.
-
Y. Q. Ren, Y. Q. Sun, D. Wu, Z. H. Cui and A. K. Qin,
¡°A new makeup transfer with super-resolution¡±, Proc. of the 26th
International Conference on Neural Information Processing
(ICONIP¡¯19), Sydney, Australia, December 12-15, 2019.
-
Z. M. Liu, G. Y. Gao,
A. K. Qin, T. Wu and C. H. Liu, ¡°Action recognition with
bootstrapping based long-range temporal context attention¡±, Proc.
of the 27th ACM
International Conference on Multimedia (ACMMM 2019), Nice,
France, October 21-25, 2019.
-
P. Abeysekara, H. Dong and
A. K. Qin, ¡°Machine learning-driven trust for MEC-based IoT
services¡±, Proc. of the
2019 IEEE Conference on Web Services (ICWS'19), Milan, Italy,
July 8-13, 2019.
-
H. Song, A. K.
Qin, P. W. Tsai and J. J. Liang, ¡°Multitasking multi-swarm
optimization¡±, Proc. of
the 2019 IEEE Congress on Evolutionary Computation (CEC¡¯19),
Wellington, New Zealand, June 10-13, 2019.
-
C. Jin, P. W. Tsai and
A. K. Qin, ¡°A study on knowledge reuse strategies in multitasking
differential evolution¡±, Proc. of
the 2019 IEEE Congress on
Evolutionary Computation (CEC¡¯19), Wellington, New Zealand, June
10-13, 2019.
-
X. L. Zheng, Y. Lei,
A. K. Qin, D. Y. Zhou, J. Shi and M. G. Gong, "Differential
evolutionary multi-task optimization¡±, Proc. of
the 2019 IEEE Congress on Evolutionary Computation (CEC¡¯19),
Wellington, New Zealand, June 10-13, 2019.
-
J. Liono, F. D. Salim, N. V. Berkel, V. Kostakos and
A. K. Qin, ¡°Improving
experience sampling with multi-view user-driven annotation
prediction¡±, Proc. of
the 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom¡¯19), Kyoto, Japan, March 10 - 15, 2019.
-
J. Liono, Z. S. Abdallah,
A. K. Qin and F. D. Salim, ¡°Inferring transportation mode and human
activity from mobile sensing in daily life¡±,
Proc. of the 15th International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous¡¯18), New York, NY, USA, November 5-7, 2018.
-
B. Y. Zhang, A.
K. Qin and T. Sellis, ¡°Evolutionary feature subspaces generation
for ensemble classification¡±,
Proc. of the Genetic and Evolutionary Computation Conference
(GECCO¡¯18), Kyoto, Japan, July 15-19, 2018.
-
H. Song, A. K.
Qin and F. D. Salim, ¡°Evolutionary multi-objective ensemble
learning for multivariate electricity consumption prediction¡±,
Proc. of the 2018 IEEE International Joint Conference on Neural
Networks (IJCNN¡¯18), Rio de Janeiro, Brazil, 2018.
-
B. Y. Zhang, A.
K. Qin and J. Chan, ¡°An efficient binary search based neuron
pruning method for ConvNet condensation¡±,
Proc. of the 24th
International Conference on Neural Information Processing
(ICONIP¡¯17), Guangzhou, China, November 14-18, 2017.
-
H. Song, A. K.
Qin and F. D. Salim, ¡°Multi-resolution selective ensemble
extreme learning machine for electricity consumption prediction¡±,
Proc. of the 24th International Conference on Neural
Information Processing (ICONIP¡¯17), Guangzhou, China, November
14-18, 2017.
-
S. Jayaratna, A. Bouguettaya, H. Dong,
A. K. Qin and A. Erradi,
¡°Subjective evaluation of market-driven cloud services¡±,
Proc. of the 24th IEEE International Conference on Web Services
(ICWS¡¯17), Hawaii, USA, June 25-30, 2017.
-
C. Jin and and
A. K. Qin, ¡°A GPU-based implementation of brain storm
optimization¡±, Proc. of the
2017 IEEE Congress on Evolutionary Computation (CEC¡¯17),
Donostia-San Sebasti¨¢n, Spain, June 5-8, 2017.
-
Jonathan Liono, F. D. S. Salim and
A. K. Qin ¡°Optimal time
window for temporal segmentation of sensor streams in multi-activity
recognition¡±, Proc. of
the 13th Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous¡¯16), Hiroshima, Japan, November 28-December 1,
2016.
-
J. K. Zhang, S. Y. Xia, H. Pan and
A. K. Qin, ¡°A
genetics-motivated unsupervised model for tri-subject kinship
verification¡±, Proc. of the 23rd
IEEE International Conference on Image Processing (ICIP'16),
Phoenix, Arizona, USA, September 25¨C28, 2016.
-
J. K. Zhang, S. Y. Xia, K. Y. Lu, H. Pan and
A. K. Qin, ¡°Robust road
detection from a single image¡±,
Proc. of the
23rd International Conference on Pattern Recognition
(ICPR'16), Cancun, Mexico, December 4-8, 2016.
-
A. Campbell, V. Ciesielski and
A. K. Qin, ¡°Node label matching improves classification performance
in deep belief networks¡±,
Proc. of the 2016 IEEE International Joint Conference on Neural
Networks (IJCNN'16), Vancouver, Canada, July 25-29, 2016.
-
Y. W. Li, L. Z. Jin,
A. K. Qin, C. Y. Sun, Y. S. Ong and T. Cui, ¡°Semi-supervised
auto-encoder based on manifold learning¡±,
Proc. of the 2016 IEEE
International Joint Conference on Neural Networks (IJCNN'16),
Vancouver, Canada, July 25-29, 2016.
-
H. Song, A. K.
Qin and F. D. Salim, ¡°Multivariate electricity consumption
prediction with extreme learning machine¡±,
Proc. of the 2016 IEEE
International Joint Conference on Neural Networks (IJCNN'16),
Vancouver, Canada, July 25-29, 2016.
-
A. Kenny, X. D. Li,
A. K. Qin and A. T. Ernst, ¡°A population-based local search
technique with random descent and jump for the steiner tree problem
in graphs¡±, Proc. of the 2016
Genetic and Evolutionary Computation Conference (GECCO¡¯16),
Denver, Colorado, USA, July 20-24, 2016.
-
R. Chen, H. R. Li,
A. K. Qin, S. Kasiviswanathan and H. X. Jin, ¡°Private spatial data
aggregation in the local setting¡±,
Proc. of the 32nd
IEEE International Conference on Data Engineering (ICDE'16),
Helsinki, Finland, May 16-20, 2016.
-
S. Xia, J. K. Zhang, K. Y. Lu and
A. K. Qin, ¡°Road detection via unsupervised feature learning¡±,
Proc. of the 30th
International Conference on Image and Vision Computing New Zealand
(IVCNZ'15), Auckland, New Zealand, November 23-24, 2015.
-
S. Mistry, A. Bouguettaya, H. Dong and
A. K. Qin, ¡°Optimizing
Long-term IaaS Service Composition¡±,
Proc. of the 13th
International Conference on Service Oriented Computing (ICSOC¡¯15),
Goa, India, November 16-19, 2015.
-
S. Mistry, A. Bouguettaya, H. Dong and
A. K. Qin, ¡°Predicting
dynamic requests behavior in long-term IaaS service composition¡±,
Proc. of the 22nd IEEE International Conference on Web
Services (ICWS¡¯15), New York, USA, June 27 - July 2, 2015.
-
B. Kazimipour, M. Omidvar, X. Li and
A. K.
Qin, ¡°A sensitivity
analysis of contribution-based cooperative co-evolutionary
algorithms¡±, Proc. of the 2015
IEEE Congress on Evolutionary Computation (CEC¡¯15), Sendai,
Japan, May 25-28, 2015.
-
S. C. Liu, Y. F. Wei, K. Tang,
A. K. Qin and
X. Yao, ¡°QoS-aware long-term based service composition in cloud
computing¡±, Proc. of the 2015
IEEE Congress on Evolutionary Computation (CEC¡¯15), Sendai,
Japan, May 25-28, 2015.
-
C. Jin, A. K.
Qin and K. Tang, ¡°Local ensemble surrogate assisted crowding
differential evolution¡±, Proc.
of the 2015 IEEE Congress on Evolutionary Computation (CEC¡¯15),
Sendai, Japan, 2015.
-
Allan Campbell, Vic Ciesielski and
A. K. Qin, ¡°Feature
discovery by deep learning for aesthetic analysis of evolved
abstract images¡±, Proc. of
Evostar 2015, Copenhagen, Denmark, April 8-10, 2015.
-
B. Kazimipour, X. Li and
A. K. Qin, ¡°Why advanced population initialization techniques
perform poorly in high dimensions?¡±
Proc. of
the 10th
International Conference on Simulated Evolution and Learning
(SEAL'14), Dunedin, New Zealand, December 15-18, 2014.
-
P. Yang, K. Tang, L. Li and
A. K. Qin, ¡°Evolutionary robust optimization with multiple
solutions¡±, Proc. of the 18th Asia
Pacific Symposium on Intelligent and Evolutionary Systems (IES¡¯14),
Singapore, November 10-12, 2014.
-
T. H. Wong, A.
K. Qin, S. Wang and Y. Shi, ¡°cuSaDE: A CUDA-based parallel
self-adaptive differential evolution algorithm¡±,
Proc. of the 18th
Asia Pacific Symposium on Intelligent and Evolutionary Systems
(IES¡¯14), Singapore, November 10-12, 2014.
-
J. J. Liang, H. Song, B. Y. Qu, W. Liu and
A. K. Qin, ¡°Neural
network based on dynamic multi-swarm particle swarm optimizer for
ultra-short-term load forecasting¡±,
Proc. of the 5th
International Conference on Swarm Intelligence (ICSI'14), Hefei, China, October
17-20, 2014.
-
A. K. Qin,
K. Tang, Hong Pan and Si-Yu Xia, ¡°Self-adaptive differential
evolution with local search chains for real-parameter
single-objective optimization¡±,
Proc. of the 2014 IEEE Congress on Evolutionary Computation (CEC'14),
Beijing, China, July 6-11, 2014.
-
B. Xue, A. K.
Qin and M. Zhang, ¡°An archive based particle swarm optimisation
for feature selection in classification¡±,
Proc. of the 2014 IEEE
Congress on Evolutionary Computation (CEC'14), Beijing, China,
July 6-11, 2014.
-
B. Kazimipour, Xiaodong Li,
A. K. Qin, ¡°A review of population initialization techniques for
evolutionary algorithms¡±,
Proc. of the 2014 IEEE Congress on Evolutionary Computation (CEC'14),
Beijing, China, July 6-11, 2014.
-
B. Kazimipour, M. N. Omidvar, Xiaodong Li,
A. K. Qin, ¡°A novel
hybridization of opposition-based learning and cooperative
co-evolutionary for large-scale optimization¡±,
Proc. of the 2014 IEEE
Congress on Evolutionary Computation (CEC'14), Beijing, China,
July 6-11, 2014.
-
B. Kazimipour, Xiaodong Li and
A. K. Qin, ¡°Effects of population initialization on differential
evolution for large scale optimization¡±,
Proc. of the 2014 IEEE
Congress on Evolutionary Computation (CEC'14), Beijing, China,
July 6-11, 2014.
-
J. Zhong, K. Tang and
A. K. Qin, ¡°Finding convex hull vertices in metric space¡±,
Proc. of the 2014 IEEE
International Joint Conference on Neural Networks (IJCNN'14),
Beijing, China, July 6-11, 2014.
-
Si-Yu Xia, Hong Pan and
A. K. Qin, ¡°Face clustering in photo album¡±,
Proc. of the 22nd International Conference on Pattern
Recognition (ICPR'14), Stockholm, Sweden, August 24-28, 2014.
-
W. Liu, H. Song, J. J. Liang, B. Y. Qu,
A. K. Qin, ¡°Neural
network based on self-adaptive differential evolution for
ultra-short-term power load forecasting¡±,
Proc. of the 10th
International Conference on Intelligent Computing (ICIC'14),
Taiyuan, China, August 3-6, 2014.
-
A. K. Qin and Xiaodong Li, ¡°Differential
evolution on the CEC-2013 single-objective continuous optimization
testbed¡±, Proc. of the 2013
IEEE Congress on Evolutionary Computation (CEC'13), Cancun,
Mexico, June 20-23, 2013.
-
Feng Xie,
A. K. Qin, Andy Song and Vic Ciesielski, ¡°Sensor-based activity
recognition with improved GP-based classifier¡±,
Proc. of the 2013 IEEE Congress on Evolutionary Computation (CEC'13),
Cancun, Mexico, June 20-23, 2013.
-
Borhan Kazimipour, Xiaodong Li and
A. K. Qin,
¡°Initialization methods for large scale global optimization¡±,
Proc. of the 2013 IEEE
Congress on Evolutionary Computation (CEC'13), Cancun, Mexico,
June 20-23, 2013.
-
A. K. Qin and Xiaodong Li, ¡°Investigation
of self-adaptive differential evolution on the CEC-2013
single-objective continuous optimization testbed¡±,
Proc. of the 2013 IEEE
Congress on Evolutionary Computation (CEC'13), Cancun, Mexico,
June 20-23, 2013.
-
Hong Pan, Yaping Zhu,
A. K. Qin and Liangzheng
Xia, ¡°Mining heterogeneous class-specific codebook for categorical
object detection and classification¡±,
Proc. of the 2013 IEEE
International Conference on Image Processing (ICIP'13),
Melbourne, Australia, September 15-18, 2013.
-
Hong Pan, Yaping Zhu, Si-Yu Xia
and K. Qin, ¡°Improved
generic categorical object detection Fusing depth cue with 2D
appearance and shape features¡±,
Proc. of the 21st
International Conference on Pattern Recognition (ICPR'12),
Tsukuba Science City, Japan, November, 2012.
-
A. K. Qin, F. Raimondo, F. Forbes and Y. S.
Ong, ¡°An improved CUDA-based implementation of differential
evolution on GPU¡±, Proc. of
the 2012 Genetic and Evolutionary Computation Conference (GECCO'12),
Philadelphia, USA, July, 2012.
-
A. K. Qin
and F. Forbes, ¡°Dynamic regional harmony search with opposition and
local learning¡±, Proc. of the
2011 Genetic and Evolutionary Computation Conference (GECCO'11),
Dublin, Ireland, July, 2011.
-
A. K. Qin
and F. Forbes, ¡°Harmony search with differential mutation based
pitch adjustment¡±, Proc. of
the 2011 Genetic and Evolutionary Computation Conference (GECCO'11),
Dublin, Ireland, July, 2011.
-
D. A. Clausi, A.
K. Qin, M. S. Chowdhury, P. Yu and P. Maillard, ¡°MAGIC:
MAp-Guided Ice Classification system for operational analysis¡±,
Proc. of the 5th IAPR Workshop on Pattern Recognition in Remote Sensing
(PRRS¡¯08) in conjunction with
the 19th
International Conference on Pattern Recognition (ICPR¡¯08),
Tampa, Florida, USA, December 7, 2008.
-
V. L. Huang, A.
K. Qin and P. N. Suganthan, ¡°Multi-objective optimization based
on self-adaptive differential evolution algorithm¡±, Proc. of IEEE
Congress on Evolutionary Computation (CEC¡¯07), Singapore,
September 2007.
-
A. K. Qin, P. N. Suganthan, C. H. Tay
and H. S. Pa, ¡°Personal identification system based on multiple
palmprint features¡±, Proc. of
the 9th
International Conference on Control, Automation, Robotics and Vision
(ICARCV¡¯06), Singapore, December, 2006.
-
A. K. Qin, P. N. Suganthan and M.
Loog, ¡°Efficient feature
extraction based on regularized uncorrelated Chernoff discriminant
analysis¡±,
Proc. of the
18th Int. Conf.
on Pattern Recognition (ICPR¡¯06), Hong Kong, August 2006.
-
V. L. Huang, A.
K. Qin and P. N. Suganthan, ¡°Self-adaptive differential
evolution algorithm for constrained real-parameter optimization¡±,
Proc. of IEEE Congress on Evolutionary Computation (CEC¡¯06),
Vancouver, BC, Canada, July 2006.
-
A. K. Qin
and P. N. Suganthan, ¡°Self-adaptive differential evolution algorithm
for numerical optimization¡±, Proc. of the 2005 IEEE Congress on
Evolutionary Computation (CEC¡¯05), Edinburgh, UK,
September 2005.
-
A. K. Qin,
S. Y. M. Shi, P. N. Suganthan and M. Loog, ¡°Enhanced direct linear
discriminant analysis for feature extraction on high dimensional
data¡±, Proc. of the 20th National Conference on
Artificial Intelligence (AAAI¡¯05), Pittsburgh, Pennsylvania,
USA, July 2005.
-
J. J. Liang, A.
K. Qin, P. N. Suganthan and S. Baskar, ¡°Evaluation of
comprehensive learning particle swarm optimizer¡±, Proc. of the
11th International Conference on Neural Information
Processing (ICONIP¡¯04), pp. 230-235, Science City, Calcutta,
November 2004.
-
J. J. Liang, A.
K. Qin, P. N. Suganthan and S. Baskar, ¡°Particle swarm
optimization algorithms with novel learning strategies¡±,
Proc. of
IEEE International
Conference on systems, man and cybernetics 2004
(SMC¡¯04), Hague, Netherlands, October 2004.
-
A. K. Qin,
P. N. Suganthan and J. J. Liang, ¡°A new generalized LVQ algorithm
via harmonic to minimum distance measure transition¡±,
Proc. of
IEEE International
Conference on systems, man and cybernetics 2004
(SMC¡¯04), Hague, Netherlands, October 2004.
-
A. K. Qin
and P. N. Suganthan, ¡°A novel kernel prototype-based learning
algorithm¡±, Proc. of the
17th International Conference on Pattern Recognition
(ICPR¡¯04), Cambridge, UK, August 2004.
-
A. K. Qin
and P. N. Suganthan, ¡°Kernel neural gas algorithms with application
to cluster analysis¡±, Proc. of
the 17th International Conference on Pattern Recognition
(ICPR¡¯04), Cambridge, UK, August 2004.
-
A. K. Qin
and P. N. Suganthan, ¡°Growing generalized learning vector
quantization with local neighborhood adaptation rule¡±,
Proc. of
IEEE International
Conference on Intelligent Systems (ICIS¡¯04), Sofia,
Bulgaria, June 2004.
-
A. K. Qin and P. N. Suganthan, ¡°A robust neural
gas algorithm for clustering analysis¡±,
Proc. of the International
Conference on Intelligent Sensing and Information Processing
(ICISIP¡¯04), Chennai, India, January 2004.
Technical Reports
-
B. Da, Y. S. Ong, L. Feng,
A. K. Qin, A. Gupta, Z. Zhu, C. K. Ting, K. Tang, X. Yao,
"Evolutionary Multitasking for Single-objective Continuous
Optimization: Benchmark Problems, Performance Metric, and Baseline
Results", arXiv preprint arXiv:1706.03470, 2017.
-
Y. Yuan, Y. S. Ong, L. Feng,
A. K. Qin, A. Gupta, B.
Da, Q. Zhang, K. C. Tan, Y. Jin, "Evolutionary Multitasking for
Multiobjective Continuous Optimization: Benchmark Problems,
Performance Metrics and Baseline Results", arXiv preprint
arXiv:1706.02766, 2017.
-
X. Li, K. Tang, M. Omidvar, Z. Yang and
K. Qin, "Benchmark
Functions for the CEC'2013 Special Session and Competition on Large
Scale Global Optimization",
Technical Report, Evolutionary Computation and Machine Learning
Group, RMIT University, Australia, 2013.
-
V. L. Huang,
A. K. Qin, K. Deb, E. Zitzler, P. N. Suganthan, J. J .Liang, M.
Preuss and S. Huband, "Problem definitions for performance
assessment of multi-objective optimization algorithms",
Special Session & Competition
on Performance Assessment of Multi-Objective Optimization Algorithms
for IEEE Congress on
Evolutionary Computation (CEC¡¯07), Singapore,
Technical Report, Nanyang Technological University, Singapore, 2007.
|